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L Introduction

This report contains descriptions of models that can be used to estimate the search
effectiveness of detection systems whose characteristics an not well defined. In addition, the
report contains example analyses that illustrate their use. The analyses ignore critical factors
such as the cost associated with a detection system in establishing and maintaining a search. For
this reason, they illustrate, at best, preliminary analyses.

Because the focus of the report is on detection systems whose characteristics an not well
defined, only models that require limited information arm considered in the analyses. For
example, definite range law detection models and random search models that are described in
Reference 1 and elsewhere.

A general definite range law detection model describes a hypothetical detection system
that detects a target with probability p if the target's range is less than or equal to a definite
range and with probability zero if the target's range is greater than the definite range. In the
example analyses in this report, p is set equal to one which is consistent with the classical
definite range law of Reference 1.

A random search model describes a search that has a diminishing returns characteristic
that can be attributed to errors in implementing a search plan. In addition to requiring limited
information, random search models can be used to describe barrier search plans as well as area
search plans.

In the example analyses, the primary measure of effectiveness for a detection system that
is used for area search is the time to first detection of a target in the search region. And, the
primary measure of effectiveness for a detection system that is used for barrier search is the
probability of detection given that a target crosses the barrier.

The localization area associated with a detection and the time required to classify false
targets are additional measure of a detection system's effectiveness. Both localization models
and classification models an discussed in the report.



R. Lateral Range Curves and Sweep Width

A lateral range curve is a plot of the probability that a target will be detected in a
straight line encounter as a function of the target's horizontal range at its closest point of
approach (CPA). A straight line encounter is an encounter in which a target's track is a straight
line relative to a detection system's sensor. (As defined here, an encounter between a detection
system and a target occurs while and only while the probability of detection for an observation is
greater than the false alarm probability for the observation.) Two lateral range curves an: shown
in Figure 1.

Sweep width W is defined in Reference 1 as the area under a target's lateral range curve.
It is defined more operationally but more narrowly in Reference 2 for lateral range curves that
are symmetric about zero CPA by: W - 2- r where r is the lateral range such that the
probability of detecting a target given that the target's lateral range is greater than r is equal to
that of not detecting the target given the target's lateral range is less than or equal to r.

.oOOOOgeseseeeeee *o eoooeooooooeoo

0 o

0

ao

0o l

0 0

e 0
00

0 0

°g0 S 0

Figure 1. Two lateral rnmge curves for a MAD detection system in a straight line encounter

with a magnetic dipole target. The curve defined by the open circles is for a crosscorrlation
detector. The remaining curve is for an energy detector. The curves are based on an encounter
model that is described in Reference 3. The horizontal axis gives the target's horizontal range at
CPA in meters and, for both curves, at CPA the vertical axis is 1.

2



As an illustration, in Figure 1, the crosscorrelation detector lateral range curve suggests a
definite range value of 400 meters and the energy detector lateral range curve suggests a definite
range value of 350 meters. Although neither curve is symmetric about CPA, for the purposes
of this report, they both satisfactorily approximate the description of a lateral range curve for a
definite range law detection system.

Both the formal definition of sweep width in Reference 2 and the more operational
definition in Reference 3 imply that the sweep width W against a target for a definite range
law detection system with a definite range R is given by: W - 2.R. Using this result, the
definite range law approximations that arc suggested above give a sweep width of 800 meters
for the crosscorrelation detector and a sweep width of 700 meters for the energy detector against
the MAD target to which the two lateral range curves refer.

In Appendix 1, it is shown that a sweep width can be associated with a wake (line) as
well as a vessel (point). The association is based on a model that is described in Reference 4.

If a lateral range curve cannot be determined for a detection system, but an estimate of
the detection system's maximum detection range for a target can be, then by using a definite
range law model with the estimate as the definite range, the sweep width for target is twice the
definite range. If the detection system represents a threat and the estimate is not less than the
true value, then this would be a conservative procedure.
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II]. The Area and Barrier Search Models

The first random search model that is considered describes an area search in which either
a target or a detection system's sensor or both move randomly through a search region. The
model gives the probability that the time to first detection of the target by the detection system is
at or before a specified time t as:

(1) P(T : t) - I - exp [-wA-W t/A]

were, T is the time to first detection, the primary measure of effectiveness, WA is the average
speed of the target relative to the sensor, W is the detection system's sweep width against the
target and A is the area of the search region. A development of the model is given in Reference
I and an alternative development is given in Reference 5. The determination of an average
relative speed wA is described in Appendix 2. And, as indicated in Appendix 2, for the analyses
in this report, WA can be satisfactorily approximated by either the sensor's speed v or the
target's speed u.

The model that is used to describe both ladder search plans and barrier search plans that
arc ladder search plans in the target's reference frame gives the probability P that a target will
be detected in a search as:

(2) P - W/s for W/s 5 1.

Here, W is the definite range law detection system's sweep width against the target and s is the
ladder search track spacing.

In a conservative version of the model, overlaps and holidays in the search coverage are
considered and P is given by:

(3) P - I - exp [- W/s].

In this version, the restriction on W/s can be relaxed.

Both models are developed in Referenv! 1. The requirements for establishing a barrier
search that is a ladder search in a target's refe t frame are given in Reference 5 where the
model described by Equation 3 is referred to ac Jegraded ladder search model.

A model that has been used to model back-and-forth barrier search plans gives the

probability P that a target that crosses the barrier will be detected as:

(4) P - [W/L].[I + v2/u 2 ]"2  for [W/L].[I + v2/u 2 ]J" < 1.

Here, W is the detection system's sweep width against the target, L is the barrier width, u is
the target's speed when it crosses the barrier and v is the searcher's speed back-and-forth on the
barrier.
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If a target's wake is the target of a detection system and a wake element is considered a
definite range law target, then it is shown in Appendix I that the detection system's sweep
width Ww against the target is given by:

(5) Ww - R+2. -. , /z

were R is the detection system's definite range against a wake element and Lw is the wake
length. A somewhat more detailed model is described in Reference 4.

A model that is developed in Reference 5 describes a detection system that detects
intermittent signals of length St. The model has the following characteristics: A target
generates signals at random times such that the time between the end of one signal and the
beginning of the next signal is a random variable that is determined by a Poisson process. A
signal is detected if and only if the signal is being generated when the target is at a range that is
Less than or equal to a definite range (a definite range law approximation is used). With this
model, the lateral range curve for a target is given by:

(6) p(x) = 1 - exp (-[2 / (w .r)].(R2 - x2)"' + 8t / 'P} for lxi < R

where w is the speed of the target relative to the detection system's sensor, T is the average
time between signals tand R is the detection system's definite range. The detection system's
sweep width W, against the target is the integral of p(x) over the interval -R < x < R.
Since the integral cannot be evaluated in terms of elementary functions, an approximation based
on the lateral range curve for an intermittent target signal that is periodic is considered next.

If the signals arc periodic rather than random, the signal period is "r and the signal
duration is 8t < r, then the lateral range curve is given by:

(7) p(x) - [2 / (w . )].(R 2 - x2 )112 + 8t/P for R< w(r - St)/2.

In this case, the integral of p(x) over the interval -R < x < R gives the sweep width as:

(8) W, - it.R 2/(w.r) + 2.R.St/,z for R< w.(T - Bt)/2.

where, by definition, W, is the detection system's sweep width against the target.

If [2 /(w -,r)] .(RW - x2 )"2 < .1, the lateral range curve that is defined by Equation 6
can be approximated by:

(9) p(x) - [2/(w .?)] J.( R2 - x2 )'" for R < IxI

and, therefore, from Equation 7 and Equation 8, the sweep width for the random intermittent
target model can be approximated by:

(10) Wi - x . R2/(w ' ) for [2 /(w -,t)]( R2 - x2)"2 < .1 and 8t << 't.

5



This approximation is used in Section IV to estimate the effectiveness of a hypothetical
detection system that detects intermittent target signals.

As a basis for comparing the effectiveness of the hypothetical detection system that is
analyzed in Section IV, a modified random search model is used hem to estimate the
effectiveness of a detection system that monitors a sensor field. In this model, a target moves
randomly with speed u through a field of n definite range law sensors. For this case, w - u
and the probability that the time to first detection of a target is at or before a specified time t is
given by:

(10) P(T S t) - 1-exp( [-u.t)I/AJ.7' W1 )

Here, T is the time to first detection by a sensor, W, is the detection system's sweep width
against the target for the i th sensor and A is the area covered by the field.

In Reference 1, a detection system's sweep rate S against a target is defined by the
relation: S - w. W where W is the detection system's sweep against the target and w is the
target's speed relative to the detection system's search sensor. Clearly, A / S is a measure of the
time to search a region of area A by a detection system with a search rate S. However, in
general, P( T : A / S ) < 1, since the ratio does not account for a number of factors that
determine the time to first detection. In particular, it does not account for overlaps and holidays
in the coverage of a searched region.

The random search model can be considered to account for overlaps and holidays in a
conservative way. And, for the random search model, the expected or average time to detect a
target is given by:

(11) E(T) -A/S.

And, from Equation 1,

(12) P(T < A/S) S .63.
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IV. The Use of the Models to Estimate Detection System Effectiveness

Three analyses of the effectiveness of a hypothetical detection system are given in this
section to illustrate the use of the modcls that arc defined above. In the analyses, use is made of
a random search model, a degramO-d ladder search model and a back-and-forth barrier search
vmodel

The analyses are based on a fictitious scenario that is defined as follows: Intelligence
information suggests that a detection system exists that could represent a threat to submarines in
certain operations. The information indicates that the system is used on an aircraft that conducts
searches in operating areas. The information also indicates that the detection system may only
detect intermittent signals that are generated at random times. The information does not
indicate the nature of the signals nor the mechanism by which they are generated. However, it
does suggest the following values: a 120 nautical mile by 200 nautical mile rectangular search
region, an aircraft search speed v equal to 200 knots, a target speed u equal to 5 knots, a
definite range law detection system with a definite range equal to 20 nautical miles, an
intermittent signal with an average time between signals equal to 2 hours and signal duration t
equal to 2 minutes and a ladder search plan with a track spacing equal to 40 nautical miles. (The
track spacing value is not consistent with the assumed nature of the signals; but, since the signal
information and the track spacing value come from different sources, the inconsistency is
accepted.) The information suggests a barrier front of 100 nautical miles when the system is
used in a barrier search.

The First Analysis:

A random search model is used in the first analysis to estimate the detection system's
effectiveness when it is used with an area search plan. The scenario values and Equation 9 give a
sweep width W1 - 3.14 nautical miles for a definite range law detection system against a target
that generates random signals that are determined by a Poisson process. The sweep rate against
the target S, - 628 square nautical miles per hour. Since A - 24,000 square nautical miles, by
Equation I1, the expected time to detect the target E( T) " 38.2 hours.

The Second Analysis:

A degraded ladder search model is used in the second analysis to estimate the detection
system's effectiveness with an area search plan. The analysis also applies to a barrier search plan
that is a ladder search in a target's reference frame when the target's course and speed are
assumed to be known. For the scenario track spacing, s - 40 nautical miles and the sweep
width W - 3.14 nautical miles, Equation 3 gives a probability of detection P - .0755.

If n independent degraded ladder searches can be made, the probability of detection is
given by:

(13) P - I - exp(-n.W/s)

7



From Equation 13, the number of degraded ladder searches n required to have a probability of

detection equal to a specificd value P can be determined from the relation:

(14) n -(s/W).ln(I - P)

For P - .63, n - 12.66, so 13 degraded ladder searches give a probability of
detection comparable to the probability of detection for a random search of 31.8 hours. The
length of an ideal ladder search leg is 200 nautical miles. Since a ladder search of 3 legs covers
the search region, the length of an ideal ladder search is 680 nautical miles including the 40
nautical miles between the legs. So, 13 ladder searches would require approximately 33.8 hours
to complete, since each ladder search requires 2.6 hours.

The above result is not surprising based on the following argument from Reference 1:
With m the number of legs and b the length of a leg, the ladder search area A - m .s. b and,
ignoring the time to move between legs, the time to complete a ladder search t - m -b / u.
Then substituting these values into Equation I gives Equation 3 that defines the degraded ladder
search model since wA - u in this case.

If the ladder search model had been used rather than the degraded ladder search model,
then, Equation 2 gives P - .0785. If n independent ladder searches can be made, the
probability of detection is given by:

(15) P - 1 - (1 - W/s)" for W/s < 1.

From Equation 15, the number n of ladder searches required to have a probability of detection
equal to a specified value P can be determined from the relation:

(16) n ln( 1 - P)/ln( I - W/s)

For P - .63, n - 12.15, so again 13 ladder searches give a probability of detection
comparable to the probability of detection for a random search of 31.8 hours. This is not
surprising, since W/s - .0785 and, from Equation 2 and Equation 3, the difference between
the ladder search model and the degraded ladder search model is negligible for W / s < .1.

"jibe Third Analysis:

A back-and-forth barrier search plan is not consistent with the scenario. However, a
stationary barrier search plan that is a ladder search in the target's reference frame is consistent
with the scenario. Since a ladder search barrier plan requires a specific target course, a value for
the target's course is assumed to be specified by the geography of a strait. With this modified
scenario, P - .0755 using the degraded ladder search model.

Clearly, a barrier with a detection probability of .0755 would not be satisfactory for
most operations. The difficulty arises because of the track spacing which is appropriate for a
continuous target signal but not for the intermittent target signal that is specified by the scenario.

8



For a continuous target signal and a definite range law detection system, the barrier
model gives a probability of detection equal to 1. This suggests a more simplistic barrier
analysis: Since the time to complete a leg ladder search in the relative space of the target is
approximately .5 hours from Reference 5, the probability that at least one target signal will be
generated in .5 hours is approximately 0.22. And the probability that the target will be at a
range from the detection system's sensor that is less than or equal to 20 nautical miles is
approximately .4. So, the probability that a target that crosses the barrier will be detected is
approximately .088.

9



V. Localization Effectiveness

As a basis for determining the evaluating the effectiveness of the hypothetical detection
system of Section IV, consider a detection system that employs a sensor field of n sensors, for
example, a field of n magnetometers. Suppose the field covers the search region of the
scenario of Section TV and suppose the magnetometers are definite range law sensors, each with
a definite range R - .5 nautical miles against the target. Since W - 2 R for each sensor,
Equation 10 becomes:

(17) P(T!5 t) - cxp(-2 n.u.tR/A)

And, the expected or average time for a target to be detected is given by:

(18) E(T) - A/(2. n. u .R)

So, for the hypothetical detection system in an area search described by the random search
model in the first analysis of Section IV, the number of magnetometers required to give a
comparable expected time to detection can be determined with the relation:

(19) n- A/[2.u.R.(T)]

For the values being considered, n - 125.6. S; a field of 126 sensor, each with a definite
range of.5 nautical miles, would have a comparable expected times to detection. However,
when a target is detected by a magnetometer in the field, it is localized within a circle whose
radius is .5 nautical miles and when it is detected by the detection system according to the above
analysis, it is localized within a circle whose radius is 20 nautical miles.

Suppose the information in the scenario of Section TV had included a localization
capability for the hypothetical system that was specified as follows: When a detection occurs,
the final localization is conducted with a definite range law detection system with a definite
range against the target of .5 nautical miles. Since the area of the localization disk for the
hypothetical detection system is 1,2567 square nautical miles, by Equation 19, the expected
time to achieve final localization would be 6.3 hours.

Suppose, in addition, that the information available suggested that a target's bearing at
detection is localized to an interval of 40 degrees. Then, at detection, a target would be localized
to a sector of a circular disk with an area of 140 square nautical miles, and, by Equation 19, the
expected time to achieve final iocalization would be .7 hours.

As an alternative to the scenario of Section IV, suppose the information had indicated the
existence of detection system with several sensors that detect target signals. And, the
information indicated that, on detection, a sensor determined with reasonable accuracy a target's
bearing but not its range. In addition, suppose that the information suggested the following
values: a bearing error of ±5 degrees and a sensor separation of 10 nautical miles. With this
scenario, a localization capability as a function of target range could be estimated by noting the
area of the region determined by intersecting bearing lines from sensor locations separated by

10



10 nautical miles. If the ranges considered are less than 500 nautical miles, a flat earth model
should be sufficient for the model geometry. In this model, bearing errors are symmetric about
the true bearing and am: no greater than the specified limits. Figure 2 shows a localization
region generated by bearing observations from two sensors. If more than two sensor stations
amr involved, the localization region is not immediately evident In this case, the limiting
bearing lines for each sensor pair define a localization region, so, for n sensors, the number of
localization regions is equal to the number of combinations of n things taken 2 at a tint.

Figure 2. A map showing the location of two sensor stations. The sensors are located at the
circled points and the lines radiating from the points represent the limiting bearing lines for a
detected target. The localization region is the region bounded by the four bearing lines.

A model is described in Reference 6 which eliminates this problem. It is an example of
a bearings only localization model. The model determines a bivariate normal probability
distribution for the location of a target based on bearing errors that are normally distributed. A
localization region is determined by specifying a required probability of containment, typically
.86 (a two sigma region), and the localization regions that arn generated by the model are
bounded by ellipses. Figure 3 shows a localization region generated by three sensor station. A
similar model and models that determine elliptical localization regions for an array of sensors
based on range errors as well as bearing errors an described in Reference 7.

11



Figure 3. An example of an elliptical localization region generated by the model described in
Reference 6. The dimensions of the ellipse are determined by the required probability of
containment for the localization. The point within the elliptical boundary is at the estimated
position of the target and the region within the ellipse is a minimum area confidence region for
the estimate.

12



VL Classification Effectiveness

The analyses in Section IV do not address a detection system's classification
effectiveness. A model that does this is discussed here. The model which is developed in
Appendix 3 determines classification effectiveness through the time to first detection.

The model describes an area search in which a searcher moves randomly through a
search region that contains both a target and false targets. The model is based on the random
search model and it gives the probability that a target is detected at or before a specified time t

(20) P(T S t) - -exp [-(wA- t WF)/A]

were WF can be considered to be the detection system's sweep width against the target in the
presence of false targets and, as in the random search model, T is the time to first detection, the
primary measure ofeffectiveness, wA is the average speed of the target relative to the detection
system's sensor and A is the area of the search region. The sweep width in the presence of
false targets WF is related to the sweep width W by:

(21) WI - W/(I +

where t is the time searching plus the time classifying, 'r is the average time to classify a false
target and v is the average number of false target detections per unit of time while not
classifying.

With false targets, the ratio of the expected time to detect a target when there are false
targets to that when there are no false targets is: W / W. and this is a measure of the reduced
effectiveness of a detection system that results from its detection of false targets.

As an example, suppose T - 15 minutes and v - .3 false targets per hour. Then, for
the first analysis in Section IV, the effective sweep width WF - .81 nautical miles rather than
3.14 nautical miles. So, W / W, - 3.87 and the expected time to detect the target is equal to
148.1 hours rather than 38.2 hours. And, in addition, the probability the target will be detected
in 38.2 hours is .23 rather than .63.

Like the random search model, this classification model is transparent, that is, in addition
to the effect of the other parameters, the effect of the parameters T and v is evident. But, the
information required to use the model is significantly greater than that required for the random
search model.

A second type of classification model is discussed in Appendix 4. Although the model
describes a sensor that moves relative to a target and false targets whose relative positions
remain fixed, it does illustrate what in general is a simulation model's increased versatility as
well as increased information requirement relative to the "back-of-the-envelope" analytical
models of this report.

13



Appendix 1. A Wake Detection Model

The wake detection model is based on the following assumptions: A target wake is a
moving straight line in a horizontal plane. The wake is detected during an encounter if and only
if the horizontal range of a detection system's sensor from at least one point on the wake is equal
to or less than a definite value. In a straight line encounter between a detection system's sensor
and a wake, the angle between the projection of the sensores track on the plane of the wake and
the wake is a random variable that is equally likely to have any value between 0* and 90°.
The encounter geometry for a straight line encounter between a wake and a detection system's
sensor is shown in Figure 4.

y

definite range circle

a

wake

Figure 4. The encounter geometry in the plane of the wake for a straight line encounter between
a wake and a detection system's sensor. The angle between the wake and the sensor's projected
track on the plane of the wake is oL The horizontal distance between the midpoint of the wake
and the sensor's track is x and the encounter geometry is at he time the midpoint of the wake is
at CPA.

A lateral range curve that is generated with the model can be used to determine the sweep
width of a detection system against a wake for a wake and detection system that can be
satisfactorily represented by the model. The sweep width can be determined more directly by
first determining the sweep width as a function of oL With x the horizontal range of the
midpoint of the wake, the sweep width for a wake of length I is given by:

Ww(ct) - 2.[R +(X./2).cosa]

14



Since Ww(oc) is the sweep width given the encounter angle is ax and since a is uniformly
distributed between 0 and 90 , the sweep width is determined by:

IVs

Ww - (2 / it J'o 2Wa).-da.

Ww - 2.(R + X,/x).



Appendix 2. Average Relative Speed in a Series of Straight Line Encounters

A target's speed w relative to a detection system's sensor is a factor in determining the
probability the target will be detected in a straight line encounter. This implies that both the
lateral range curve and the sweep width an functions of w. The velocity of the target relative
to a sensor is given by: the vector equation: w - v - u where w is the relative velocity, v
is the target's velocity and u is the sensor's velocity. In the encounters that an: considered in
this report, the velocity vectors can be considered to be coplanar, and, with • the angle between
v and u, the relative speed is given by: w - (u2 + v^ - 2. u .v .cos ]J" where u, v and
w an the magnitudes of the vectors, that is the sensor's speed, the target's speed and the target's
speed relative to the sensor.

If the angle * is assumed to be the value of a random variable that is uniformly
distributed between 0 and 360 for each encounter during a search, then an average value for
w in the search is given by:

WA M J01tw• d

The assumptions on which this average is based is consistent with the random search
model. However, the improvement in an evaluation of a detection system that used this average
with a random search model rather than u or v in evaluating a detection system would likely
be negligible unless the speed of the detection system's sensor and the speed of the target were
comparable. In particular, the difference between u and WA if u /v < .5 or between v and
WA if v / u < .5, should not be significant for the purposes of this report. This can be seen
from Figure 5 below which shows a graph of ( wA - u ) / u as a function of v / u if u > v
or a graph of (wA - v ) / v as a function of u / v if v > u. The graph illustrates the small
difference between wA and u for u/v < .5 and between wAand v for v/u <.5.
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Appendix 3. A Classification Model

The model to estimate th. effect of classification on the effectiveness of a detection
system is described in Refrence 8. The model is based on the following assumptions: A
search is a random search. Detections cannot be made during the time a contact is being
classified. While not classifying, false targets are detected at a rate v. The average time to
classify a false target is t.

With these assumptions, tc - (t - tc ).v. where t is the search time and tc is
the time classifying. And, t - tc - t ( 1 + v. T) is the time during which detections can
occur. Hence, based on the random search model, the probability that a target is detected in a
search at or before searching for a time t is given by:

P(T 5 t) - I - exp [w.W. (t - tc )/A]

or

P(T : t) - I - cxp(w.WF.t/A]

where

WF- W/(l +v.r)

can be considered to be the detection system's effective sweep width in the presence of false
targets.
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Appendix 4. A Comparison of Two Classification Models

A comparison is made here between the analytical model that is developed in Appendix 3
and the model that is implemented through a simulation that is described in Reference 6. The
purpose of the comparison is to indicate how the limitations of the analytical model might be
examined.

The simulation model describes both detection and classification in terms of definite
range laws. In the model, the number of false targets in a search region is specified. However,
the false targets are identical in their detection and classification characteristics. In this sense,
the model is the same as the model of Appendix 3. After a false target is detected, the false
target's identity and location is maintained, that is, it is not redetected.

A major difference between the models is in the average false target detection rate: In
the simulation model, the average false target detection rate does not change while in the
simulation model, as a search continues, the average false target rate trends towards zero. In
addition, the simulation allows the characteristics of the false targets to be expressed in terms of
the number of false targets in a search region, their average detection and classification ranges
and the target's average detection and classification range.

The simulation is limited in that it describes a sensor that moves relative to a target and
false targets whose relative positions are fixed. The model of Appendix 3 is more general in that
the false target detection rate on which it is based can refer to false targets that move relative to
each other as well as to the target.

A simulation model with more flexibility could allow a more penetrating examination of
the analytical model. But, for the purpose of this report, the simulation model that is described
in Reference 6 does suggest some advantages that might a simulation might have relative to the
model of Appendix 3.

The program that implements the simulation model can be used to generate histograms
that indicate the distribution of the time to first detection as a function of the number of false
targets in a search area, the target's detection range and classification range and the false targets'
detection range and classification range. By comparing the histogram for the time to first
detection with zero false targets to those for various numbers of false targets, an estimate of a
detection system's classification effectiveness can be made. A simulated search track that was
generated by the model is shown in Figure 6.
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Figure 6. A map generated by the simulation model that is described in Reference 6 showing the
track of a detection system's sensor in a random search. The points within the smaller concentric
circles represent the location of false targets. The point within the larger concentric circle

pmresent the location of a target. The radius of the inner concentric circles corresponds to a
detection system's classification range and the radius of the outer concentric circle corresponds
to its detection range.
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